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A b s h c t .  The molecular translation and rotational motions of liquid CCI, are studied by 
meansof theconcurrent use of computer moleculardynamicssimulationsaswell asneutron 
quasi-elastic scattering. The relevant correlation functions have been analysed in terms of 
simple analytical models and the total spectra are compared with the measured ones. 
The data confirms the substantial departure from simple rotational or difhision behaviour 
encountered in a previous work. 

1. Introduction 

Liquid carbon tetrachloride is considered to be perhaps the simplest molecular liquid 
due to its high molecular symmetry and to the fact that the interparticle potential can be 
reasonably well represented in terms of a sum of pair interactions with only a relatively 
small electrostaticcontribution arisingfrom the permanent molecular octupole moment. 
It can therefore be considered as a molecular analogue to liquefied rare gases, and it 
therefore constitutes a prime candidate to test the effects of the molecular shape on the 
microscopic dynamics. 

The liquid structure has already been studied in detail [l] along with its microscopic 
dynamics at low [2] and high [3] energy transfers by neutron inelastic scattering. 

The purpose of the present work is to explore the single-particle dynamics of such a 
simple molecular liquid. A recent quasi-elastic study has shown [Z] a number of dif- 
ficulties that appear when rather simplified physical models are used to analyse the 
spectra. In such a respect, both the linear and angular velocity correlation functions are 
analysed in detail, in order to compare the results with those arising from the fits to the 
quasi-elastic spectra. On theother hand, it extends the quasi-elastic experiments towards 
higher energy resolution. So that it allows the determination of the incoherent linewidth 
to be free of the complications caused by the need of isolating this component when 
larger energy windows are used. 
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The structure of the paper is as follows. A brief account of the relevant formulae 
connecting the experimental observables (neutron cross-sections) with the simulated 
quantities is presented in section 2. The description of the methods followed to compute 
the correlation functions is given in section 3. In section 4 some high resolution exper- 
imental data are presented and a discussion of the models used to analyse the simu- 
lated data is given in section 5,  Finally, a summary and conclusions are presented in 
section 6. 

2. Basic formulae 

The partial differential cross-section d20/dQ dw of the scattering of an assembly of 
N identical molecules may be factored as a product of three quantities depending 
respectively on translations, rotations and vibrations, and following [4], it can be written 
as 

= (k/ko)Stot(Q. w )  ( 1 )  

where the I (Q ,  r) functionscomprise all the relevant microscopicdynamical information 
of the system and are divided into single-molecular (IPp(Q, f), I , (Q, t ) )  and collective 
I(Q, t )  components. 

I f iv(Q,4 =(exp(ip.a,(r))exp(-iQ.u,(O))) 

I ( Q ,  r )  = ( 1 / N )  x(exp(iQ .Ri(r))exp(-iQ .R,(O))) 
d 

b,,,,, = Kb:) - (bP)2}”z 

bp.eab = ( b p )  

ko and k denote the incident and scattered neutron wavevectors, respectively; Q = 
k - kO, fiw = h2/2m(k’ - ki). bh denotes the bound scattering amplitude of the Fth 
nucleus in the ith molecule. A similar meaning applies to bi . The bracket ( )denotes an 
ensemble average and the sum over p and v runs over all the nuclei in the molecule, and 
those over i and j over all the molecules in the system. The position vector of the 
scattering nucleus was separated into three components, according to: 

+,(f) = R + a; + U; (3) 
where U; is the displacement of the nucleus I( from its equilibrium position within the 
molecule i, originating from internal vibrations, i.e. deformations of bond lengths and 
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angles, Ri denotes the position of the centre of mass (CM) and corresponds to the 
translational component, a; is the rotational component and denotes the equilibrium 
position of the nucleus with respect to the CM. 

The total cross-section (1) can also be written as a sum of quasi-elastic and inelastic 
contributionsof both incoherent and coherent scattering. The quasi-elastic contribution 
can be written in terms of the scattering law S(Q, w) as 

%l(Q, W )  = ~*(Q)si,dQ, + p2(Q)Sc0dQ, U )  (4) 
where K(Q) and v(Q) are molecular form factors given in terms of atom scattering 
lengths and distances to the centre of mass [2]. 

The rotational intermediate scattering function I,JQ, t )  can be written as an expan- 
sioninvariouspartial waveseachcorresponding to a rotational angular momentum state 
‘I’ of the CCL, molecule [5], i.e. 

OD 

Zci,ci(Q, 0 E (2 + l)i?(QacJFr(O (5 )  

k d Q 7  0 = E (21 + l) j?(Q~cJPdcos @cI,c~)F&) 

l = O  

D 

(6)  
f = O  

where jr is the Bessel function of order I, Pr is the Legendre polynomial of order I ,  Oc,,c,. 
is the angle between a pair of distinct CI atoms [l] and F,(t) is a rotational relaxation 
function of order 1. The subscript CI, C1 refers to the same atom in the molecule whereas 
C1, C1‘ refers to a pair of atoms in the same molecule. Sears [5] has established the 
relation between these Ff(t) functions and those introduced by Gordon, i.e. 

Fr(0 = (f’i(u . U ( [ ) ) )  = (Pr(c0~ B ( 0 ) )  (7) 

where p is the angle through which a vector U fixed in the molecule rotates in time 1. All 
we know about Fr(t) is that F,(t) = 1 and that we may expect Fr(t) for I > 0 to have a free 
rotator behaviour at small times and the characteristics of rotational diffusion at large 
times. Since rca = 1.76638, [l], one immediately sees that for the range 
0.2 < Q < 4 A-’ accessible to an instrument such as IN6 at the ILL [6] for example, one 
needs only to keep up to the 1 = 2 term in the expansion. So, in what follows, we restrict 
the calculation to F,(t) and F2(t), the most important rotational relaxation functions in 
cold neutron scattering experiments. F,(r) = (P,(ms p(r))) is the single-molecule dipole 
autocorrelation function which can be obtained, for example, from a Fourier transform 
of an infra-red absorption spectrum. F,(t) = (P2(cosB(t))) is related to the depolarized 
component of a rotational Raman band [7,8].  

3. Computational technique and results 

3.1. Molecular dynamics simulation 

Both translational and rotational equations of motion have been solved by applying the 
Gear predictor-corrector method [9]. The CM motions of molecules were followed using 
a fifth-order algorithm. Euler’s equations of motion in quaternions were solved by a 
fourth-order algorithm, and 108 molecules were confined in a cubic box and subjected 
to periodic boundary conditions. Each run was started from a configuration from an 
equilibrated run at high temperature. In each computation the positions, the velocities, 
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Table 1. Parameten lor the site-site potential. 

~~ ~ ~~ . -. ~ . .~ ~ 

Interaction s/k d n m )  

c-c 51.2 0.460 
C C I  72.4 0.405 .~ . 
CI-CI 102.4 0.350 

~ ~ ~~~ 

the quaternions and the angular velocities were stored every At = 0.025 ps in the high 
temperature thermodynamic state and At = 0.020 ps in the low temperature counter- 
part, The liquid densities were the ones corresponding to the experimental values at 293 
and 260 K (1.66 and 1.58 g cm-'), respectively. The intermolecular potential used is the 
site-site Lennard-Jones model proposed by McDonald et a1 [ l o ] .  Thus, the potential is 

U(R~Z,W~,WZ)=~U=~B(~~~S) (8) 

where Rt2 is the vector from the centre of molecule 1 to that of molecule 2, w, is the 
orientation of molecule i, res is the distance between size 01 and a site p on molecule 2, 
and 

U+(rm,d = 4 ~ . + d 0 . p / r ) ~ ~  - (0ea/r)61 (9) 

The relevant potential parameters are given in table 1. The potential used in the 
simulation was truncated with a site to site cut-off distance of one half of the box width. 

The time-dependent correlations investigated here refer to quantities directly amen- 
able to experimentation such as the single particle I,(Q, t)  and the total I(Q, t )  inter- 
mediate scattering functions, as well as some others which, although not being directly 
observable with neutron scattering, specify the details of the molecular dynamics con- 
tained in the I,,(Q, r )  functions. In particular, functions belonging to this latter class 
that will be computed are 

the angular velocity autocorrelation function; 
the first and the second rotational relaxation functions F,(t)  and Fz(t), 

Other correlation functions not directly observable by neutron scattering will be also 
computed. These functions give information on the single particle dynamics and are: 

the mean-square atomic displacement p( t ) ;  
the velocity autocorrelation function ~ ( t ) .  

3.2. The mean square displacement 

p( t )  is calculated as follows: 

where the first sum runs over the N molecules considered and the second sum runs over 
all the configurations (4726 configurations for T = 260 K and 3062 for T = 293 K). ri(t) 
is the position of the CM of the ith molecule. p(t)  is calculated with a time step of 0.2ps 
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Figure 1. Mean square displacements (rz(r)). The 
coefficientsofthe asymptoticform6Dr + Caregiven 
by: D = 0.450 X 10-5cm2s-’ and C = 1.5 
A’ for T =  260 K (dotted curve) and D = 
1.278 x lO-’cm’s-’ and C = 0.9 A2 for T = 
293 K (broken curve). 
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Figure 2. (a) Computed normalized velocity 
autocorrelation function (VACF) at time intervals of 
0.02 ps and 0.025 ps respectively for T = 260 K (dot- 
ted curve) and T = 293 K (broken curve); ( b )  Com- 
puted normalized angular velocity autocorrelation 
function (AVACF) at time intervals of 0 . 0 2 ~ s  and 
0.025 ps respectively for T = 260 K (dotted curve) 
and T = 293 K (broken curve) 

and is presented in figure 1. From this figure, it is seen that the asymptotic behaviour 
6Dt + C of (r’) is already achieved at about f = 3 ps. 

3.3. Velocity autocorrelation function (VACF) 

This function is the basic quantity in the discussion of self-diffusion. It is a measure of 
the projection of the particle velocity at time f onto its initial value, averaged over all 

) .  
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Table 2. Calculated values of D (in 1 O ~ ’ c c ” s ~ ’ )  and values obtained by experimental 
techniques 

0, = 1/6tlim Tracer 
P W  D, diffusion D,.,,a., 

T = 2 6 0 K  0.450 0.930 0 3W 
T = 2 7 5 K  0.35 
T = 293 K 1.278 1.695 1.284 

initial conditions. It is calculated as follows: 

Short time intervals are necessary for the calculation of the memory function of *(I) 
so the VACF corresponding to T = 260 K and T = 293 K are computed at time intervals 
of 0.02 ps and 0.025 ps respectively. We show in figure 2(a) the normalized VACF for the 
two temperatures considered. This figure shows the general behaviour of this function, 
i.e. the very short-time behaviour t < 0.1 psis seen to be insensitive to temperature and 
density variations. In this time region v(t) is governed by the second frequency moment 
of its power spectrum q ( m ) ;  the intermediate time behaviour 0.1 < f < 0.5 psis seen to 
be quite sensitive to density and temperature. This behaviour evidences the presence of 
a large backscattering region where the negative value of *(t) implies a high probability 
of a large angle deflection in the particle motion. In this respect it is radically different 
from the Langevin-type VACF, namely exp(-lr,Tl/MD). The generalized frequency 
spectrum is given by: 

and is shown in figure 3 for T = 260 K as well as the transform of a Langevin-type 
autocorrelation function which is included for comparison purposes. 

As expected for v(r), the so-called backscattering is weaker as T increases. The 
depth of the main minimum at 293 K is about one half the depth at 260 K. 

The only transport coefficient we have determined is the diffusion coefficient. It has 
been computed either by the use of the Einstein relation, i.e. from the slope (D,) of the 
linear part of the curve representing p ( t )  or from the time integral (0,) of the VACF, ie 

D,=- kBTI v(r) dt. 
’ M  

Table2showsthe computedvaluesof Daswell as thevaluesobtained by tracer diffusion 
[ll] and by neutrons (see section 4). 

Both methods of calculation of the self-diffusion coefficient give different values 
which become more disparate as the temperature is lowered. Such a fact is caused by 
two types of errors. The first are caused by the dfficultyof evaluating the integral in (13) 
since, in order to reduce the statistical noise, q(t) is truncated at 5 ps. The main effect 
of such a truncation is the underestimation of longtime (hydrodynamic) tail of the 
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T - F ) l K  

Figure 3. Spectrum of the VACF at T = 260 K (full 
curve) as well as the spectrum 01 the VACF of a Lan- 
gcvin type which is a Lorentrian (dotted curve) 

F l y r e  4. (U) Normalized incoherent scattering func- 
tion /,(e, I )  at 293 K for Seteral valuesof momentum 
transfers These values are. 0.213. 0.687, 0.972, 
1.059, 1.371. 1683, 1.988. 2.226, 2.3SO and 
2.605 A-'  (b)Comparisonof/,(Q,r) plotted loor tu0 
different values o l  the triplet ( n  , n2.  n,) at the WO 
temperaturcs considered. This gitcr a momentum 
transferof0.246and0.696~~'forT= 260K(dotled 
curve) and 0.243 and 0.687 A - '  for T = 293 K 
(broken curve). 

autocorrelation function which at low temperatures has a noticeable oscillatory behav- 
iour with a region below zero which extends until rather large times. The second type of 
errors comes from the fact that in a computer experiment it is not easy to construct an 
accurate ensemble average and then the calculation of the correlation function V(t) is 
not accurate enough [12]. From arguments given in [13] the accuracy in the computed 
coefficientsdue tostatistical averagingshouldnot be betterthan5%. On theother hand, 
in order to reconcile the disparate values of D computed using the two criteria, it 
would be necessary to perform a simulation with high-statistical accuracy at long times, 
somethhgwhich was not attempted since our main focus of interest was to compare the 
simulation data with those obtained with QENS. 

However, it can be seen that the agreement between the values calculated using the 
Einstein relation and those obtained by tracer diffusion or QENS is quite good, which 
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demonstrates that such a simplified procedure of estimation of D is accurate enough, at 
least for this class of non-associated liquids. 

It is worth noting that the diffusion coefficient exhibits a dramatic change between 
the two temperatures (it is approximately double). 

3.4. Intermediatescattering laws I,(Q, t )  and I(Q, t) 

The Is(Q, t )  is computed as follows 
N 7mlX n, 

,=1 q= I , = 1  
UQ, r) = (1/W ( l /rmd ( 1 / 4  2 exp[iQ, . (.AT + to) - . , (TO)) ]  (14) 

where 

Q, = ( b / L ) ( n , 1 , n ~ , 7 ~ 3 1 )  

L is the length of the box; n , ,  n,, n3 are integers and nt is the number of triplets (nl, n2,  
n,) that gives the same module of Q. 

The computation of Is(Q, t )  is made at time intervals of 0.2 ps since it provides 
sufficiently good statistics. Figure 4(a) shows several constant Q plots of I,(Q, t )  com- 
puted from data of the 293 K simulation. It is seen from this figure that the time 
dependence of ZJQ, t )  is qualitatively the same in the explored Q range: a fast decay 
during the first picosecond which becomes more noticeable as Q increases, followed by 
a much slower decay at long times. The same is obtained for the 260 K simulation. We 
may say that there are at least two different time scales in Is(Q,t). The effect of 
temperature on Z,(Q, I )  is seen in figure 4(b) where we show, for the same values of the 
triplet (nl ,  n2, n3) ,  the computed I,(Q,t) for the two temperatures considered. The 
[(Q, t )  is computed as 

where 

This quantity is computed with time intervals of 0.02 ps for T = 260 K and Af = 
0.025 ps for T = 293 K and has been drawn in figure 5(a) for the three smallest values of 
the momentum transfer corresponding to the 293 K simulation. The figure at low Q 
resembles the one obtained by McDonald [lo], i.e. an oscillation appears and we expect 
to have a phonon excitation (see also figure 5(b)). The modellingofl(Q, t )  and the study 
of collective excitation has been the subject of a subsequent paper [14]. 

The I(Q, t )  verifies [15] 

lim Z(Q, r )  = lim S ( Q )  = x*p/p 
Q+O ?3 

where x is the isothermal compressibility that is equal to 8.31 x 
l /kBTandp =N/Visthedensity. 

mz N-', p = 
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All these correlation functions serve to analyse the translational motions. To inves- 
tigate the rotational motion we have calculated the velocity autocorrelation function 
and the rotational relaxation functions F,( t )  and F2(t) .  

3.5. Angular velocity autocorrelation function (AVACF) 

This function comprises the details of the rotational motion of molecules in liquids and 
is calculated from 

The C(r) functions for T = 260 K and T = 293 K are shown in figure 2(6). 
There is a close similarity between the linear and angular velocity functions, at least 

at short times, suggesting that the same processes contribute to the randomization of 
both kinds of motion. This feature was noted by Lyndell-Bell [16] for tetrahedral 
molecules. As in the VACF, a negative overshoot appears in AVACF. It is caused by non- 
zero probability that during an interaction a molecule simply reverses its direction of 
rotation. Thus, the AVACF cannot be represented by a J-diffusion model in which the 
magnitude and the direction of the angular velocity is randomized at each collision [17]. 
We define a correlation time T, by 

which gives t, = 0.13 ps and 0.16 ps for T = 260 and 293 K respectively. 

be simply related to a decay time. 
Since the AvAcFcannot be represented by asimple exponential, therefore 5, cannot 

3.6. First and second rotational relaxation functions 

As we have pointed out before (see section 2) all the details of the dynamics of molecular 
reorientations relevant for cold neutrons experiments are F,(t) and F2(t). These quan- 
tities are calculated as follows 

and are presented in figure 6(a) for T = 260 and 293 K respectively. 

arithmic plots of Fl(t) or from the integral 
The relaxation times z l  and t2 may be obtained either from the slope of the log- 

If the Fl(t) were exponentials, both definitions would agree. As this is not the case for 
our Fl(t) curves, we have calculated the last integral on the best function that fits Fl(t). 



0.1 I ' ' I I I ' I ' ' I I ' I ' ' I ' 
. lo1 T = 193 R 

dl = 0.025 ps 

0.0'75- 

- 
I 

0 0.05- - - 
0.015- 

0.0 , , , I , z 7 1 , .-m 

L t P . )  

Figure 5. (a) Coherent intermediate scattering 
function /(e. I )  at 293 K for the three lowest val- 
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I(Q, r)for thelowertvalucofmomentumtransfer 
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Figure6. ((I) First andsecond rotational relaxation 
functionsat 26Q(dotredcurve) and293 K (broken 
curve); ( b )  Rtotthere twofunctions(dottedcurve) 
with an exponential function (broken curve) 

Table3.Valuesof 1, and r2. 
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Theintegralwascalculatedat largetimessuch that F,(t)goestozero.Thevaluesobtained 
are summarized in table 3. 

The experimental values for t2 determined by NMR [18] and Raman [19] measure- 
ments are z2 = 1.7 ps and t2 = 1.8 ps respectively at 296 K. The agreement is reaIly as 
good as that of the diffusion constant. 

4. Experimental results 

The experiments were performed on the backscattering instrument IN13 at the Institut 
hue-Langevin Grenoble [6]. This spectrometer has a good energy resolution--of the 
order of a few peV-and covers a large range of the reciprocal space 
(0.3 A-' < Q < 5.5 A-'). A run at 275 K was carried out with a wavelength of 2.23 A. 
The quasi-elastic contributions arise from coherent and incoherent effects and can be 
expressed by (4), i.e.: 

In order to fit the experimental data we have used a simple Lorentzian function for the 
incoherent part, i.e. 

and we have used the Skold approximation to derive the coherent part, i.e. 

The fits are good, as is shown in figure 7. We note that for low Q ,  the incoherent part 
is important whereas the coherent one is important at high Q. Since the energy window 
employed in this instrument is of about 0.02 meV, no information about the rotational 
dynamicscanbeobtained. However, themeasurementenablesone toobtainanestimate 
for the self-diffusion coefficient as well as the measurement of coherent effects at this 
frequency scale. From the slope of the curve giving the incoherent linewidth versus Qz 
a diffusion coefficient of 0.35 X 

It is difficult to follow the incoherent component at large Q-values since the value of 
the molecular form-factors given in (5) become very small for large values of the 
argument ( e a c l ) .  As a consequence, the experimental spectra only show a measurable 
intensity in the wavevector range 0.3 < Q < 1.5 A-'. Therefore, the main result from 
this experiment is obtaining an estimate of the value of the self-diffusion coefficient. On 
the other hand the dependence on Q of the coherent linewidth has been given in a 
previous work [2]. 

cm2 s-' has been computed. 

5. Models 

5.1. Models for the centre of mass motions 

Although the quantities computed from the analysis of the classical trajectories 
encompass all the sought information, they are of scarce use when trying to understand 
the nature of the underlying physical processes which drive the microscopic thermal 
motion of the fluid. On the other hand it  is clear that the above quantities are of small 
use when confronted with the task of analysing the experimental intensities. For such a 
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Figure7. Fit oftheexperimentaldataobtainedon 
IN13 by a function of the form (3). The full curve 
under the experimental point represents the reso- 
lution. At low Q. the incoherent part (broken 
curve) is important whereas the mherent one 
(dotted curve) is important at large Q. 

Figure 8. Memory function (MF) of the VACT ( a )  
and of the AVACF ( b )  at the MO temperatures 
considered. 

purpose, the most convenient way of extracting the rich information contained in the 
simulation is constituted by the analysis in terms of dynamical models which will serve 
to express the complicated time and wavevector dependences shown by the computed 
autocorrelation functions in terms of simpler counterparts. From an experimental point 
of view, the aim of such an exercise is to derive easily parametrizable functions able to 
describe the pertinent kind of motion in terms of a few relaxational processes, so that, 
at some stage, they could serve as a tool for spectral analysis in order to obtain, from 
comparison with the experiment, the relaxation times and amplitudes. 
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The important quantity relevant to the analysis of the VACF is K( t ) ,  the memory 
function of q(f)  that is computed by solving the memory equation [20,21]: 

dVW - = - [ K( t  - r )q(r )  dr .  d r  

The motivation for the use of memory functions is based on the hope that a possibly 
complicated correlation function q(t) can be generated through (23) by a simpler (more 
easily parametrizable) function K(t) .  

For very short times the tagged particle creates a perturbation in the fluid that 
propagates in time and influences the force on the particle at time t .  This retardation 
effect, neglected in the simple Langevin equation, is described by the generalized 
Langevin equation where the concept of memory function is introduced. K ( t )  is shown 
in figure 8(a) for the two temperatures considered. It contains a rapidly decaying 
component which reflects the effects of individual interaction between the tagged mol- 
ecule and its neighbours. 

A particularly useful extension of the last equation has been developed by Mori 
[22,23], who assumed the set of kernels KO(( ) ,  . . ., K,(t) to obey the set of coupled 
Volterra equations such that 

with n = 1,. . . , N .  Taking the Laplace transform, 

C @ )  = C(O)/L. + KO@)] = C(O)/{P + Ko@)/b + K,@)l} = . . (25) 

which is a continued fraction approximation to the function C @ ) .  
Many authors truncate this hierarchy at zero-order assuming KO@) to have an 

exponential or Gaussian form. They obtain results which sometimes are not in good 
agreement with experiments but if the hierarchy is truncated at the first order, then the 
agreement between postulated and exact correlation functions is satisfactory. 

In our case the fit with an exponential or a Gaussian function of the memory function 
calculated from (23) gives rather poor fits at short time and does not reproduce the main 
minimum (see figure 9). So we have calculated the memory function K , ( t )  from (24) and 
then we have tested some function y( t )  that verifies, 

K , @ )  = K,(O)Y(O. (26) 
If we take for y( t )  an exponential, it is easy to derive an algebraic expression for the 
velocity correlation function which results [24], 

W = i(cosVt)/l + r) + (l/P)[(al + ra2)/(1 + 0 1  sin(Pt)}exp(-a,r) 

+ [rm + r ) i e x ~ ( - ~ )  (27) 

r = [2n,(2p2 - a:)]/[az(3n: - pz - a:)]. 
where 

It is shown in figure 10 that this function gives good fits to the computed tp(t) at short 
times. Atlarge times(from0.4 ps)alargedeviationfromthecomputedcurveisobserved. 

To measure the accuracy of the various models KY( t )  proposed for the computed 
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t 1 p . 2  

Figurc9.FitoftheMFofthe\~c~at293 Kwitha  
Gaussian and with an exponential function, The 
figureshows that IhisMFisneareraGausSian than 
an exponential form. 

t ( p r )  

Figure 10. Fit of the MF of the VACF at 260 K and 
290 K (solid curve) with a function of the form 
(27) (broken curve). see text. 

K:(r) we show in table 4 the results of a chi-square statistic test for the set of models 
explored 1251: 

. We sek from this table that the 2G model gives the best fit for both the VACF and the 

5.1.1. I?(Q, t ) .  Any suitable model to fit the computed data of &(Q, t) should have the 
correct limits in the long and short (t, A) space. These asymptotic limits correspond to 
diffusion and to free particle regimes, respectively. The first model we have tested is the 
one proposed by Egelstaff-Schofield [26] which has been used in [2] to fit experimental 
data. Poor fits were obtained, so that it was not possible to estimate a reasonable friction 

AVACF. 
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Table4. Chi-squarestatistic test for a setof models explored to reproducethe K,(t) memory 
function. 

Functions used 

VACF AVACF 

260K 293K 2M)K 293K 

1,331 3.426 0.939 2.737 
2G (1 - c)exp[-(~/WI + c e x p [ - ( W I  1.326 0.336 0.910 0.374 
0 + ?E exp[-(r/r,)'] + crz exp[-(f/rl)] 1.340 3.463 0.946 2.861 
1 w i N  ( I  + r / i , )  exp[-(r/r,)] 3.720 5.705 3.575 6.191 

1G expI-(~/~l)zl  

2 ~ x 3 1 ~  (1 - c)( l  + r/r,)exp[-(t/t,)] + c ( l  +r/rz)exp[-(r/r2)] 1.483 3.844 1.174 3.407 

constant. A second model based on the Gaussian approximation satisfies the low and 
large Q limit but it is not adequate for intermediate values of Q. In order to improve it, 
wehavetakenintoaccountthefirst non-GaussiancorrectionintheexpansionofI,(Q, r ) ,  
I.e., 

~ ( r )  = 3(r4)/5(rZ)Z. (28) 
Levesque and Verlet [13] have fitted this quantity and have obtained the following form 
for Is(Q, I): 

&(Q, t) = exp( -(1/6)Q2OZ(O)) [1 + [Q'(rZ(~))/721c(k/4 exp - ((t& - 111. (29) 

We have used for (r2) either the computed value or a fit of this with an itinerant oscillator 
model [27]. The fits obtained were quite good and gave the following values for Cand 
f,: 

0.0601 and 3.568 ps for 260 K and 

0.0947 and 2.832 ps for 293 K. 
In figure ll(b) we have plotted the incoherent HWHM versus Q2 deduced from the fit of 
&(Q, t) by a sum of two exponential functions which take into account the two time 
scalesof ls(Q, r). 

5.2. Models for rotation 

5.2.1. (w(r)w(O)). This function has the same form as q(t), so we have used the same 
procedure as for the VACF. As shown in figure 12, this function is well fitted at short time 
by a function of the form (27). Good fits are also obtained with the 2G model for K, ( r )  
corresponding to this function. 

5.2.2. Fi(r). As a first approximation, we take a simple rotation diffusion model for 
F,(r ) ;  i.e. 

F&) = exp[-l(l+ l)D.t] (30) 
where D, is the rotational diffusion constant. One can see from figure 6(b) that F,(r) is 
more closely approximated to an exponential than F2(t). Although the value of D, 
obtained by the fit (0.1024 ps-') agrees with the one deduced from NMR measurements 
by the relation rNMR = 1/60, (0.0981 ps-I), the fitsare rather poor and we can conclude 



1228 A Chahid et d 

". . ""1 .. I L 

Fizure I I . (a )Sl ructure l~c lorS~QIobt~nedlrom Figure 1 2 . F ~ o f t h e  \ 1 f o l t h c ~ ~ ~ C F a l 2 6 0 K 3 ~ d  
thu a.mulation 31 293 K .  ( b )  HIWM of the inco- 2 9 3 K  (solid cune) uith 3 fLnrtion 01 the form 
hercol sintulJtea part. (271 (broken run*e).see text 

that the rotational-diffusion model is only approximately valid for CCI4 as has been 
pointed by Steinhausser [ZS]. The model that adequately reproduces the F,(t) is the one 
used by Levesque [29]. The ingredients of this model are a sum of a Gaussian function 
that reproduces the fast decay at short time t < 4 ps. and an exponential function that 
rcproduces the decay for t > 4 ps. This model is given by 

a, exp(-aztz) + a3 exp(-a,[) + (1 - u I  - u 3 )  exp(-ag). (31) 
For large times the term proportional to exp(-a,t) is dominant whereas for short times 
the Gaussian term isdominant. The exponential termexp(-a$) isaddedonly toensure 
that at short times no linear term is present in the expansion of F,(t). The fits, as well as 
the relevant parameter values, are given in figure 13. 
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6. Conclusion 

The aim of the present work was to explore the fine details of the single-particle dynamics 
of liquid carbon tetrachloride in order to overcome some difficulties encountered when 
analysing the quasi-elastic spectra. Since all the relevant quantities entering in (1) have 
been calculated, it becomes natural to compute the total dynamical structure factor 
S,,(Q, 0). This is done for two values of the momentum transfer with the measured 
spectra described in [2]. Such a comparison is presented in figure 14. As can be easily 

1 1 3 I 
t (Po) 

0.01 
0 

F,  0,050 1.946 1.312 0.145 0.145 
260 K 

Fi 0.192 2.984 0.931 0.360 0.364 

F, 0.089 1.549 3.722 0.287 0.325 

F2 0.239 2,905 2.148 0.562 0.614 
293 K 

Q = 1.06 A' 

FigureI3. Fitoftherotationalrelaxationfunction 
with a Levesquc function: (31) (sec text). 

Figure 14. (0 )  Calculated S(Q, w )  with uncor- 
related orientation (broken curve) and exper- 
imental (solid curve) S(Q. o) for a momentum 
fransferof1.06k' .  (b)CalculatcdS(Q. w )  with 
uncorrelated orientation (broken curve), and 
with correlated orientation (dotted w e )  and 
cxperimentalonc ( s o l i d w e ) f o r Q  = 1.37A-'. 
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seen, the approximation given by (1) which assumes that the molecular orientations are 
unmrrelated gives a reasonable account of the lineshape for momentum transfers 
not situated in the vicinity of the maximum of the peak in S(Q)(Q,). However such 
approximation breaks down at Qp where the calculated width is about double the 
experimental one. A way of improving it is to modify the orientational factor F(Q) in 
order to take into account the strong correlations at short distances. For such a purpose 
we have used for this quantity the approximation described in [30] which gives 

F(Q) = b2, + 8 b ~ b & i n ( € ? r ~ ~ d / Q r ~ ~ d  + b& + 6bb[(sin(Qrccn))/Qrnnl 

+ 9b&l(Qr,) (32) 

(33) 

where 

l(Qr,) = IOZ’’ J?,(Qr, sin(8)) sin(@) d8  

and r, = reel sin(n-8); where 8 is the tetrahedral angle. 
The computed lineshape in figure 14(b) is now closer to the experimental one 

although itstill showsasignificant deviation. It seemsdifficult to reconcile thisdifference 
unless a model which explicitly takes into account the coupling between translation and 
rotation similar to the one described in 1311 is used. On the other hand it becomes clear 
that, in order to reconcile this deviation one has to take explicitly into account in (1) the 
effectsof low-energycollectivephenomena such ascooperative molecularreorientations 
or some kind of collective interplay between molecular linear and angular motions. This 
is quite a considerable task and, up to the present moment only the preliminary blocks 
of a theory able to predict the inhence of the effects on the measured neutron cross- 
sections have been reported (see, for instance, 1321). 

In summary, for such a simple molecular liquid it has been found that (a) in a way 
closely resembling the caseof liquefied rare-gases, the translationalcorrelation functions 
can be adequately described in terms of a Gaussian approximation corrected up to a first 
order; (b) the rotational motion evidences a clear departure from simple diffusional 
behaviour as has been noted previously from NMR [19] and quasi-elastic neutron scat- 
tering experiments 121. An empirical model consistent in a sum of Gaussian and 
exponential functions has been proven to give a reasonable account of the rotational 
relaxation functions, and the obtained ‘c2 correlation times are in good agreement with 
those determined from NMR relaxation; (c) the obtained diffusion coefficients are in good 
agreement with those determined by either tracer diffusion or from the Q dependence of 
the inelastic incoherent linewidths. 

Finally, it is worth recalling the fact that it is only in such a relatively simple molecular 
liquid that noticeable departures from idealized rotational behaviour can be seen, 
whereas most of the data regarding complex fluids (i.e. associated liquids) are still 
accounted for in terms of such simple models. The observed departures from simple 
rotational diffusion are, in our case, rather puzzling if one takes into account the 
relatively large molecular mass as well as the conventional picture of its liquid structure 
which portrays it as consisting of closely interlocked molecular units. 

Thesimplecharacterofthisliquid hasalso beennotedin arecent study ofitscollective 
dynamics [14] where the observed excitations are of an overdamped nature in most of 
the explored Q-range and the contribution of thermal (and collisional) mechanisms to 
the observedcoherent response are rather large incomparison with structuralrelaxation 
effects dominant in more complex fluids. 
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To end with, the present work emphasizes the need of a concurrent use of simulation 
techniques together with QENS measurements in order to exploit fully the information 
obtainable from experimental means. 
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